Experimental challenges in DCB testing of thin composite laminates

Panayiotis Tsokanas MSCA Postdoctoral Fellow, KU Leuven

Online Workshop 'Mode I interlaminar fracture toughness and the factors affecting it' 14 May 2024

MATERIALS ENGINEERING

Thin composite laminates

Need for thin laminates

- Material savings
- Manufacturing thermal history that can be assumed isothermal through the thickness, which is essential for semi-crystalline polymers, whose material crystallinity is crucial in mechanical and interlaminar properties.

Reasons to test thin laminates (and not following the ASTM thickness)

- Make sure about uniform cooling rate across the thickness
- Representativeness for those applications where thin laminates are needed

Material yielding or sudden breakage

80 mm extension, no crack initiation \rightarrow sudden arm break occurred

Adhesion issues to the stiffeners

- Low surface energy and wettability issues
- CF/PA6 thermoplastic fracture toughness is higher than most of the (thermoset-based) adhesives, and crack initiation at the Al–CFRTP interface is inevitable

Simaafrookhteh, Tsokanas, Loutas, Lomov, Ivens, Compos A Appl Sci Manuf 176 (2024) 107841

Atmospheric pressure plasma jet (APPJ) treatment

Cohesive Failure
Adhesive
Substrate

The composite interface is tougher than the adhesive

Experimental data reduction

Clamped model (Valvo, 2016)

$$\begin{aligned} \mathcal{G}_{\mathrm{I}} &= \frac{P^{2}}{2} \left\{ \left[d_{1} + d_{2} - \frac{\left(b_{1} + b_{2} + d_{1} \frac{h_{1}}{2} - d_{2} \frac{h_{2}}{2} \right)^{2}}{a_{1} + a_{2} + b_{1} h_{1} - b_{2} h_{2} + d_{1} \frac{h_{1}^{2}}{4} + d_{2} \frac{h_{2}^{2}}{4}} \right] a^{2} + c_{1} + c_{2} \right\} \\ \mathcal{G}_{\mathrm{II}} &= \frac{P^{2}}{2} \frac{\left(b_{1} + b_{2} + d_{1} \frac{h_{1}}{2} - d_{2} \frac{h_{2}}{2} \right)^{2}}{a_{1} + a_{2} + b_{1} h_{1} - b_{2} h_{2} + d_{1} \frac{h_{1}^{2}}{4} + d_{2} \frac{h_{2}^{2}}{4}} a^{2} \\ \mathcal{G} &= \frac{P^{2}}{2} \left[c_{1} + c_{2} + (d_{1} + d_{2}) a^{2} \right] \end{aligned}$$

These data-reduction equations are function of:

- The applied load
- The **geometry** of the specimen (sublaminate thicknesses, crack length)
- The **material properties** (engineering constants and coefficients of thermal and moisture expansion)

Experimental data reduction

Simaafrookhteh, Tsokanas, Loutas, Lomov, Ivens, Compos A Appl Sci Manuf 176 (2024) 107841